Differential expression of tissue repair genes in the pathogenesis of chronic obstructive pulmonary disease.

TitleDifferential expression of tissue repair genes in the pathogenesis of chronic obstructive pulmonary disease.
Publication TypeJournal Article
Year of Publication2010
AuthorsGosselink, JV, Hayashi, S, W Elliott, M, Xing, L, Chan, B, Yang, L, Wright, C, Sin, D, Paré, PD, Pierce, JA, Pierce, RA, Patterson, A, Cooper, J, Hogg, JC
JournalAm J Respir Crit Care Med
Volume181
Issue12
Pagination1329-35
Date Published2010 Jun 15
ISSN1535-4970
KeywordsAirway Remodeling, Emphysema, Forced Expiratory Volume, Gene Expression, Gene Expression Profiling, Humans, Microdissection, Middle Aged, Multigene Family, Polymerase Chain Reaction, Pulmonary Disease, Chronic Obstructive, Severity of Illness Index
Abstract

RATIONALE: The airflow limitation that defines severity of chronic obstructive pulmonary disease (COPD) is caused by a combination of small airway obstruction and emphysematous lung destruction.

OBJECTIVES: To examine the hypothesis that small airway obstructive and emphysematous destructive lesions are produced by differential expression of genes associated with tissue repair.

METHODS: The expression of 54 genes associated with repair of repetitively damaged tissue was measured in 136 paired samples of small bronchioles and surrounding lung tissue separated by laser capture microdissection. These samples were collected from 63 patients at different levels of disease severity who required surgery for either lung cancer or lung transplantation for very severe COPD. Gene expression was measured by quantitative polymerase chain reaction in these paired samples and compared with the FEV(1) by linear regression analysis.

MEASUREMENTS AND MAIN RESULTS: After corrections for false discovery rates, only 2 of 10 genes (serpin peptidase inhibitor/plasminogen activator inhibitor member 2 and matrix metalloproteinase [MMP] 10) increased, whereas 8 (MMP2, integrin-alpha1, vascular endothelial growth factor, a disintegrin and metallopeptidase domain 33, scatter factor/hepatocyte growth factor, tissue inhibitor of matrix metalloproteinase-2, fibronectin, and collagen 3alpha1) decreased in small airways in association with FEV(1). In contrast, 8/12 genes (early growth response factor 1, MMP1, MMP9, MMP10, plasminogen activator urokinase, plasminogen activator urokinase receptor, tumor necrosis factor, and IL13) increased and 4/12 (MMP2, tissue inhibitor of matrix metalloproteinase-1, collagen 1alpha1, and transforming growth factor-beta3) decreased in the surrounding lung tissue in association with progression of COPD.

CONCLUSIONS: The progression of COPD is associated with the differential expression of a cluster of genes that favor the degradation of the tissue surrounding the small conducting airways.

DOI10.1164/rccm.200812-1902OC
Alternate JournalAm. J. Respir. Crit. Care Med.
PubMed ID20075389
PubMed Central IDPMC2894408
Grant ListCIHR 7246 / / Canadian Institutes of Health Research / Canada
CIHR MOP-82815 / / Canadian Institutes of Health Research / Canada
P50 HL 084922 / HL / NHLBI NIH HHS / United States
P50 HL 084948 / HL / NHLBI NIH HHS / United States